
Progress in Natural Language and
Knowledge Representation

(presented by Eduard Hovy)

David Devault (ICT), Arno Hartholt (ICT), Eduard Hovy (ISI), Anton
Leuski (ICT), Tom Russ (ISI), David Traum (ICT) | 9/24/2008

The projects or efforts depicted were or are sponsored by the U.S. Army Research,
Development, and Engineering Command (RDECOM),and/or the US Army Research
Institute. The content or information presented does not necessarily reflect the position
or the policy of the Government, and no official endorsement should be inferred.

2

Even VHUMANs

mature…

MRE and SASO: We have built a very sophisticated VHUMAN:
–

Most innovative design and most complex internal structure in the research literature
–

Powerful capabilities of each module plus rich internal interconnections provide system’s
flexible and reactive behavior

But: the system has been experimental and exploratory

Recently, our work has started to mature…
–

We want to be able to extend

the system (e.g., add new agents) rapidly
–

We want to create new scenarios

easily
–

We would like to enable other people

to build scenarios
–

Many of our modules

are beginning to be used in other projects

This is typical R&D evolution: idea → pilot → prototype → re-use →
distribution

So… We are re-engineering and centralizing much of the infrastructure to
make cross-module growth and changes easy and consistent

3

NLU

Dialogue NLG

Gesture

Task
Modeling

Speech

Current state of affairs

Problem: A Babel inside the system:
–

N

major modules …

each performing a different function
–

BUT each has its own different internal representation terms and

modeling style

–

Why?
We started with some advanced legacy systems — building everything
fresh would have taken too long
Each module is pushing the state of the art in its own research field —
there’s no reason their representations and methods should correspond

This makes it a LOT of work to extend functionality that
crosses modules:

For example, you can add new words to NLU, but that doesn’t mean that
NLG knows the words!

Desiderata for ‘one-shot extensibility’
–

Should be easy to build new knowledge
–

New additions should be made consistent, also with existing knowledge
–

Knowledge should be compositional: new knowledge should plug into older knowledge
–

Knowledge should be used by all modules in the same ways

4

Example: Extending the system

Want to add new line of negotiation:
–

EXISTING: Doctor can negotiate for delivery of medical supplies downtown

–

NEW: Want Elder

to negotiate delivery of power generator

downtown
–

So: Elder needs to know
Task model module: Define “deliver” action, its preconditions, effects, dependencies
on other entities:

–

Operating the clinic downtown requires power
–

Having power downtown would be a good thing
–

Precondition for power is a power generator
–

There isn’t one today, so it has to be obtained and delivered
–

etc.

NLU and NLG and Speech modules:
–

Lexicons: Words for “power generator”, “deliver”, “need”, etc.
–

Grammars: Patterns and phases using these words that can accommodate the negotiation
–

Semantics: Representation frames that represent these concepts

Currently this is hard to do: even though the Doctor knows all this,
the Elder doesn’t, and his various modules must each be extended

Presenter
Presentation Notes
Last bullet - not changing info from doctor to elder, just adding new knowledge and re-use of existing parts

5

TASK MODEL: TASK DEFINITION

defTask deliver-power-generator-downtown {
:event deliver
:agent captain-kirk
:theme power-generator
:source us-army
:destination downtown
:pre {us-army-resourceAttribute-power-generator }
:add {downtown-resourceAttribute-power-generator(0.95)

downtown-serviceAttribute-electricity(0.95) }
}

TASK MODEL: TASK DEFINITION

defTask deliver-power-generator {
:event deliver
:agent captain-kirk
:theme power-generator
:source us-army
:pre {us-army-resourceAttribute-power-generator }
:add {downtown-resourceAttribute-power-generator(0.95)

downtown-serviceAttribute-electricity(0.95) }
}

Example: Adding new knowledge (old method)

NLG: FRAMEBANK

<S> there is not enough power downtown captain </S>

addressee captain-kirk
dialogue-act.addressee captain-kirk
dialogue-act.type assign-turn
dialogue-act.actor elder-al-hassan
dialogue-act.assignee captain-kirk
speech-act.content.attribute serviceAttribute
speech-act.content.value electricity
speech-act.content.object-id downtown
speech-act.content.polarity negative
speech-act.content.type state
speech-act.content.time present
speech-act.addressee captain-kirk
speech-act.action assert
speech-act.actor elder-al-hassan

NLG: FRAMEBANK

<S> there is not enough power captain </S>

addressee captain-kirk
dialogue-act.addressee captain-kirk
dialogue-act.type assign-turn
dialogue-act.actor elder-al-hassan
dialogue-act.assignee captain-kirk
speech-act.content.attribute serviceAttribute
speech-act.content.value electricity
speech-act.content.polarity negative
speech-act.content.type state
speech-act.content.time present
speech-act.addressee captain-kirk
speech-act.action assert
speech-act.actor elder-al-hassan

NLU: FRAMEBANK

<S> we can provide you with power generators </S>

<S>.mood declarative
<S>.sem.speechact.type offer
<S>.sem.modal.possibility can
<S>.sem.type event
<S>.sem.event deliver
<S>.sem.source us-army
<S>.sem.agent captain-kirk
<S>.sem.theme power-generator
<S>.sem.destination downtown

NLG: FRAMEBANK

<S> there is enough power </S>

addressee captain-kirk
dialogue-act.addressee captain-kirk
dialogue-act.type assign-turn
dialogue-act.actor elder-al-hassan
speech-act.content.attribute serviceAttribute
speech-act.content.value electricity
speech-act.content.type state
speech-act.content.time present
speech-act.action assert
speech-act.actor elder-al-hassan

NLU: FRAMEBANK

<S> we will provide you with power generators </S>

<S>.mood declarative
<S>.sem.speechact.type offer
<S>.sem.modal.possibility will
<S>.sem.type event
<S>.sem.event deliver
<S>.sem.source us-army
<S>.sem.agent captain-kirk
<S>.sem.theme power-generator
<S>.sem.destination downtown

NLU: FRAMEBANK

<S> we can provide power generators </S>

<S>.mood declarative
<S>.sem.speechact.type offer
<S>.sem.modal.possibility can
<S>.sem.type event
<S>.sem.event deliver
<S>.sem.source us-army
<S>.sem.agent captain-kirk
<S>.sem.theme power-generator

NLG: FRAMEBANK

<S> there is not enough power </S>

addressee captain-kirk
dialogue-act.addressee captain-kirk
dialogue-act.type assign-turn
dialogue-act.actor elder-al-hassan
speech-act.content.attribute serviceAttribute
speech-act.content.value electricity
speech-act.content.polarity negative
speech-act.content.type state
speech-act.content.time present
speech-act.action assert
speech-act.actor elder-al-hassan

TASK MODEL: TASK DEFINITION

defTask connect-power-generator {
:event connect
:agent captain-kirk
:theme power-generator
:source us-army
:pre {us-army-resourceAttribute-power-generator }
:add {downtown-resourceAttribute-power-generator(0.95)

downtown-serviceAttribute-electricity(0.95) }
}

NLU: FRAMEBANK

<S> we can deliver power generators </S>

<S>.mood declarative
<S>.sem.speechact.type offer
<S>.sem.modal.possibility can
<S>.sem.type event
<S>.sem.event deliver
<S>.sem.source us-army
<S>.sem.agent captain-kirk
<S>.sem.theme power-generator

NLU: FRAMEBANK

<S> we can not provide power generators </S>

<S>.mood declarative
<S>.sem.speechact.type offer
<S>.sem.modal.possibility can
<S>.sem.type event
<S>.sem.event deliver
<S>.sem.deliver.polarity negative
<S>.sem.source us-army
<S>.sem.agent captain-kirk
<S>.sem.theme power-generator

NLU: FRAMEBANK

<S> we can provied a power generator </S>

Presenter
Presentation Notes
This is what it takes to add new knowledge

Yellow: Task Model: reps, with preconditions and effects explicitly, etc.

…are med supplies close? NOT KNOWN

Blue: NLG: reps, each different sentence variation

Orange: NLU: same

More and more…

…and when you make a typo (“provied”), it goes wrong!

And STILL need to connect across all reps and engines…

6

Example: Adding knowledge for NLU

Still, it can be
a lot of work
to add the
knowledge
needed for
NLU:

–

Define the
words

–

Define the
representation
frame
elements

–

Link them
together

–

Ensure that
they integrate
with everything
else

Of course we create tools and interfaces to speed up system extension

QuickTime™ and a
H.264 decompressor

are needed to see this picture.

7

Today: Extending NLG, using auto-generation

Evolved specialized procedure to facilitate extensions:
–

Builder adds knowledge for one new phrase

–

System automatically creates variations, using grammar

For NLG, sequence is:
–

Want to say “power generator”
–

Generator can’t produce sentence

–

Addition interface: provide needed knowledge (yes, it’s ugly!)
–

Back to NLG: now produces sentence
–

…AND: its auto-extension produces six more variations for free!

–

BUT: this is not yet centralized, not exported to NLU…

8

Extending NLG: Before addition

QuickTime™ and a
Video decompressor

are needed to see this picture.

9

Extending NLG: Making addition

QuickTime™ and a
Video decompressor

are needed to see this picture.

10

Extending NLG: After addition

QuickTime™ and a
Video decompressor

are needed to see this picture.

11

Where are we going? A centralized framework

A single central ontology of terms:
–

Standardizes all the terms used by all modules

–

Makes explicit most of the detailed knowledge currently held by experts

A single content-building/checking interface (Protégé, from
Stanford):

–

Provides a single point of entry of all necessary info, all related

–

Supports a scripted series of content-building steps, during which the interface
requests different related kinds of info (as needed for each module)

Automated internal consistency checking

Automated content enhancer/exporter functions:
–

Automatically inherits required info from ontology and fleshes out new input
material

–

Automatically converts fleshed-out input into formats used by various modules

12

Old and new architecture

Old architecture

NL
Generation

NL
Understanding

Dialogue
Management

Action
Planning

Emotion
Reasoning

Gesture
Generation

Speech
Recognition

Speech
Synthesis

Ontology1Interface1

Ontology2Interface2

Ontology3Interface3

Ontology4Interface4

New architecture

NL
Generation

NL
Understanding

Dialogue
Management

Action
Planning

Emotion
Reasoning

Gesture
Generation

Speech
Recognition

Speech
Synthesis

Common
Ontology

Central
Interface

13

New ontology organization

Scenario-
independent

Ontology

Scenario
Family 3Scenario

Family 2Scenario
family 1

Scenario 3-1
Scenario 2-2Scenario 2-1

Scenario 1-2Scenario 1-1

• General world knowledge
• (generic actions, objects…)

• Linguistic structures
• Generic dialogue items

• Scenario actor classes
• Scenario action templates

• (generic preconds, effects...)
• Propositions for scenario

• Specific actors, locations, etc.
• Sentences for scenario

• Actor positions, attitudes, etc.
• Simulation initialization

Configuration
File

Configuration
File

Configuration
file

14

Ontology specifies action templates

Templates define
semantics of action:
Ex: One effect of a deliver action is
that the destination receives the
thing being delivered (the ‘theme’)

Templates define
semantics of action:
Ex: One effect of a deliver action is
that the destination receives the
thing being delivered (the ‘theme’)

Hierarchy allows
inheritance of semantics
Hierarchy allows
inheritance of semantics

15

Creating a new deliver

action

1. Select class1. Select class

3. Add details
• agent
• theme
• source
• destination

3. Add details
• agent
• theme
• source
• destination

2. Create instance2. Create instance

4. Inherit details
Preconditions, effects, etc. are
added automatically (and can
be edited)

4. Inherit details
Preconditions, effects, etc. are
added automatically (and can
be edited)

Results
exported to
all relevant

modules

16

Templates simplify adding deliver
Old method

Create new Deliver action instance
Specify agent = “CaptainKirk”
Specify theme = “power-generator”
Specify source = “us-army”
Specify destination = “downtown”

Create state “downtown-has-power-generator”
Create task model “downtown-has-power-generator”

Specify belief
Specify initial-value
Create state “us-army-has-power-generator”
Create task model “us-army-has-power-generator”
Specify belief
Specify probability
Specify initial-value

Create new task instance
Specify ground event is the deliver action instance
Specify precondition “us-army-has-power-generator”
Specify add-effect “downtown-has-power-generator”

New centralized method

Create new Deliver action instance
Specify agent = “CaptainKirk”
Specify theme = “power-generator”
Specify source = “us-army”
Specify destination = “downtown”

Create state “downtown-has-power-generator”
Create task model state

“downtown-has-power-generator”
Specify belief

Create new task instance
Specify ground event is the deliver action
instance

17

Work required: The old and the new

In the past: system builder
–

identify core problem,
–

locate problem in each module,
–

design all

fix/extension(s),
–

implement change(s)

in each module,

–

coordinate change across modules,
–

perform extensive tests,
–

perform cross-module debugging.

In the future: system builder
–

identify core problem,

–

design fix/extension,

–

implement change in central repository,
letting tools perform consistency check

–

perform final tests and one-shot
centralized debugging.

NL Generation

NL Understanding

Dialogue Management

Action Planning

Emotion Reasoning

Gesture Generation

Speech Recognition

Speech Synthesis

Ontology1Interface1

Ontology2Interface2

Ontology3Interface3

Ontology4Interface4

Common
Ontology

Central
Interface NL Generation

NL Understanding

Dialogue Management

Action Planning

Emotion Reasoning

Gesture Generation

Speech Recognition

Speech Synthesis

18

Where next?

We’re partway through the work…
–

Completed central standard ontology
Using Stanford’s Protégé for content building
Using Protégé’s interface for ontology access/browsing
Using OWL (Semantic Web) representation formalism
Used some concepts from various upper-level ontologies, such as SUMO and Omega

–

Completed exporter functions to some modules

To be done in coming year:
–

Integrating other modules (incl. additional exporter functions)

–

Completing consistency and integrity testing routines

–

Completing authoring environment: Extending interfaces to support specialized
authoring

–

Exploring software ‘props warehouses’

for new scenarios:
Repository of objects, standard actions, desires, plans, locations, etc.
Everything connected to ontology

19

Research contribution

Integrated ontology-driven extensibility facilitates:
–

Rapid authoring of new scenarios, new capabilities, new agents
–

Reduction of error, making expert knowledge explicit, etc. ---

Integration, consistency
checking, etc.

–

Flexible planning and scripting of training alternatives

But…this work is not just plumbing!

We want to enable non-CS people to author new scenarios…so we’re
investigating the optimal point in the tradeoff between

–

Programming for Non-Experts:
Reduced, simple, scripting languages
BUT limited in functionality
Ex.: Sgt Blackwell internal details

–

Powertools

for Experts:
High functionality
BUT need considerable expertise
Ex.: VHUMAN’s TCL, Soar, and other components

Simpler, but limited

More powerful, but complex

20

Thank you

	Progress in Natural Language and Knowledge Representation
	Even VHUMANs mature…
	Current state of affairs
	Example: Extending the system
	Example: Adding new knowledge (old method)
	Example: Adding knowledge for NLU
	Today: Extending NLG, using auto-generation
	Extending NLG: Before addition
	Extending NLG: Making addition
	Extending NLG: After addition
	Where are we going? A centralized framework
	Old and new architecture
	New ontology organization
	Ontology specifies action templates
	Creating a new deliver action
	Templates simplify adding deliver
	Work required: The old and the new
	Where next?
	Research contribution
	Thank you

